Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Robert J. Baker, Helga Bettentrup and Cameron Jones*

Department of Chemistry, Cardiff University, PO Box 912, Cardiff CF10 3TB, Wales

Correspondence e-mail: jonesca6@cardiff.ac.uk

Key indicators

Single-crystal X-ray study
$T=293 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.007 \AA$
R factor $=0.047$
$w R$ factor $=0.099$
Data-to-parameter ratio $=18.0$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2003 International Union of Crystallography Printed in Great Britain - all rights reserved

(2,6-Diisopropylphenyl)isopropylideneammonium iodide

The title compound, $\mathrm{C}_{14} \mathrm{H}_{24} \mathrm{~N}^{+} \cdot \mathrm{I}^{-}$, was formed by a Schiff base condensation of 2,6-diisopropylaniline and acetone, using GaI as a Lewis acid. A strong interaction from the iminium hydrogen $\mathrm{N}-\mathrm{H}$ to the iodide counter-ion is observed. The ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR data are also reported.

Comment

We have been investigating the reactivity of GaI (Green et al., 1990) in C-C coupling reactions (Baker \& Jones, 2003) and in the preparation of $\mathrm{Ga}^{\mathrm{I}} \mathrm{N}$-heterocyclic carbene analogues (Baker et al., 2002).

(I)

In the course of our investigations, we have found that GaI can be used as a Lewis acid catalyst for the Schiff base condensation of a primary amine and a ketone. The Schiff base condensation reaction of an aldehyde or ketone with an amine is well known to be catalysed by Lewis acids (Armesto et al., 1986). The addition of 2,6 -diisopropylaniline to a suspension of GaI in toluene, followed by half an equivalent of acetone, gives rise to the expected condensation product. This presumably reacts further with HI to give the title product, (I), in good isolated yields.

The crystal structure of this salt displays a $\mathrm{C} 1-\mathrm{N} 1$ bond length in the expected range for compounds of this type (Scholz et al., 1993). There is a close contact which may be regarded as an $\mathrm{N}-\mathrm{H} \cdots \mathrm{I}$ hydrogen bond $[\mathrm{N} 1-\mathrm{H} 1=$ 0.870 (19), H1 \cdot I1 2.57 (2), N1 \cdots I1 3.423 (4) \AA and $\mathrm{N} 1-$ H1 \cdots I1 $167(4)^{\circ}$].

Experimental

To a solution of GaI (2.07 mmol) in toluene (10 ml) was added a solution of 2,6 -diisopropylaniline ($0.37 \mathrm{ml}, 1.96 \mathrm{mmol}$) in toluene $(10 \mathrm{ml})$, followed by a solution of acetone $(0.07 \mathrm{ml}, 1.02 \mathrm{mmol})$ in toluene (10 ml). After stirring for 4 h under argon, the solvent was removed under vacuum and the residue extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (20 ml). Concentration and cooling to 243 K afforded colourless blocks of the title compound ($0.08 \mathrm{~g}, 23 \%$, m.p. $414-417 \mathrm{~K}$). IR (Nujol): $v_{\max }$ 2965, 2664, 1935, 1835, 1724, 1654, 1589, 1558, 1460, 1373, 1252, 1167, 1076, 1046, 971, 931, 825, 793, $722 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR [$400 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$]: $\delta 1.13\left(d, 6 \mathrm{H}, J=6.89 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 1.20(d, 6 \mathrm{H}, J=$ $\left.6.82 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 2.14\left(s, 3 \mathrm{H}, \mathrm{NCCH}_{3}\right), 2.71($ sept, $2 \mathrm{H}, J=6.79 \mathrm{~Hz}, \mathrm{CH})$,

Received 11 February 2003
Accepted 18 February 2003
Online 31 March 2003
$3.04\left(s, 3 H, \mathrm{NCCH}_{3}\right), 7.26(d, 2 \mathrm{H}, \mathrm{J}=7.78, m-\mathrm{Ar}), 7.42(t, 1 \mathrm{H}, \mathrm{J}=$ $11.18 \mathrm{~Hz}, p$-Ar). ${ }^{13} \mathrm{C}$ NMR [$100 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$]: $\delta 22.6\left(\mathrm{CH}_{3}\right), 23.7$ $\left(\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CN}\right), 24.7\left(\mathrm{CH}_{3}\right), 24.9\left[\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CN}\right], 29.1\left[\mathrm{CH}(\mathrm{Me})_{2}\right], 124.8$ (m - Ar), 129.8 ($o-\mathrm{Ar}), 131.1$ ($p-\mathrm{Ar}$), 143.1 ($i-\mathrm{Ar}$), 193.9 ($\mathrm{C}-\mathrm{N}$). MS (APCI): $m / z 218.0\left(M^{+}, 100 \%\right), 201.9\left(M^{+}-\mathrm{NH}_{2}\right), 175.8\left(M^{+}-\right.$ $\left.\mathrm{HC}(\mathrm{Me})_{2}\right)$.

Crystal data

$\mathrm{C}_{15} \mathrm{H}_{24} \mathrm{~N}^{+} \cdot \mathrm{I}^{-}$
$M_{r}=345.25$
Monoclinis, $P 2_{\mathrm{f}} / c$
$a=13.426(3) \AA$
$b=11.128(2) \AA$
$c=12.211(2) \AA$
$\beta=113.28(3)^{\circ}$
$V=1675.8(6) \AA^{3}$
$Z=4$

$$
\begin{aligned}
& D_{x}=1.368 \mathrm{Mg} \mathrm{~m}^{-3} \\
& \text { Mo } K \alpha \text { radiation } \\
& \text { Cell parameters from } 8761 \\
& \quad \text { reflections } \\
& \theta=2.9-25.0^{\circ} \\
& \mu=1.89 \mathrm{~mm}^{-1} \\
& T=293(2) \mathrm{K} \\
& \text { Block, colourless } \\
& 0.10 \times 0.10 \times 0.10 \mathrm{~mm}
\end{aligned}
$$

Data collection

Nonius KappaCCD diffractometer φ and ω scans
Absorption correction: multi-scan (SORTAV; Blessing, 1995)
$T_{\text {min }}=0.594, T_{\text {max }}=0.598$
8952 measured reflections 2944 independent reflections

Refinement

Refinement on F^{2}

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.047$
$w R\left(F^{2}\right)=0.099$
$S=1.07$
2944 reflections
164 parameters
H atoms treated by a mixture of independent and constrained refinement

2159 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.047$
$\theta_{\text {max }}=25.1^{\circ}$
$h=-15 \rightarrow 15$
$k=-13 \rightarrow 13$
$l=-14 \rightarrow 13$

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.0144 P)^{2}\right. \\
& +2.3024 P] \\
& \text { where } P=\left(F_{o}{ }^{2}+2 F_{c}{ }^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }=0.001 \\
& \Delta \rho_{\text {max }}=0.69 \text { e } \AA^{-3} \\
& \Delta \rho_{\text {min }}=-0.86 \mathrm{e}^{-3}
\end{aligned}
$$

Table 1
Selected geometric parameters ($\AA \mathrm{A}^{\circ}$).

$\mathrm{N} 1-\mathrm{C} 13$	$1.281(5)$	$\mathrm{C} 6-\mathrm{C} 10$	$1.518(6)$
$\mathrm{N} 1-\mathrm{C} 1$	$1.447(5)$	$\mathrm{C} 13-\mathrm{C} 14$	$1.467(7)$
$\mathrm{N} 1-\mathrm{H} 1$	$0.870(19)$	$\mathrm{C} 13-\mathrm{C} 15$	$1.480(6)$
$\mathrm{C} 2-\mathrm{C} 7$	$1.527(6)$		
$\mathrm{C} 13-\mathrm{N} 1-\mathrm{C} 1$	$127.2(4)$	$\mathrm{C} 6-\mathrm{C} 1-\mathrm{N} 1$	$118.0(4)$
$\mathrm{C} 13-\mathrm{N} 1-\mathrm{H} 1$	$115(3)$	$\mathrm{N} 1-\mathrm{C} 13-\mathrm{C} 14$	$121.1(4)$
$\mathrm{C} 1-\mathrm{N} 1-\mathrm{H} 1$	$117(3)$	$\mathrm{N} 1-\mathrm{C} 13-\mathrm{C} 15$	$119.8(4)$
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{N} 1$	$118.8(4)$		

Atom H1, attached to N1, was refined isotropically, with a restrained $\mathrm{N}-\mathrm{H}$ bond length. All other H atoms were positioned geometrically and refined with riding-model constraints.

Figure 1
The molecular structure of (I), with the atom-numbering scheme. Displacement ellipsoids are drawn at the 25% probability level.

Data collection: COLLECT (Hooft, 2000); cell refinement: DENZO-SMN (Otwinowski \& Minor, 1997); data reduction: $D E N Z O-S M N$; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: SHELXL97.

We thank the EPSRC for funding and for provision of the National Mass Spectrometry Service at Swansea University.

References

Armesto, A. R., Ortiz, M. J. \& Peres-Ossorio, R. (1986). J. Chem. Soc. Perkin Trans. 1, pp. 2021-2026.
Baker, R. J. \& Jones, C. (2003). J. Chem. Soc. Chemm. Commun. pp. 390-391.
Baker, R. J., Farley, R. D., Jones, C., Kloth, M. \& Murphey, D. M. (2002). J. Chem. Soc. Dalton Trans. pp. 3844-3850.
Blessing, R. H. (1995). Acta Cryst. A51, 33-38.
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Green, M. L. H., Mountford, P., Smout, G. J. \& Peel, S. R. (1990). Polyhedron, 9, 2763-2765.
Hooft, R. W. W. (2000). COLLECT. Nonius BV, Delft, The Netherlands.
Otwinowski, Z. \& Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr and R. M. Sweet, pp. 307-326. New York: Academic Press.

Scholz, J., Richter, B., Goddard, R. \& Kruger, C. (1993). Chem. Ber. 126, 5761.

Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.

